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Abstract. Kinetically-grown self-avoiding walks have been studied on Watts-Strogatz small-world net-
works, rewired from a two-dimensional square lattice. The maximum length L of this kind of walks is
limited in regular lattices by an attrition effect, which gives finite values for its mean value 〈L〉. For ran-
dom networks, this mean attrition length 〈L〉 scales as a power of the network size, and diverges in the
thermodynamic limit (system size N → ∞). For small-world networks, we find a behavior that interpolates
between those corresponding to regular lattices and randon networks, for rewiring probability p ranging
from 0 to 1. For p < 1, the mean self-intersection and attrition length of kinetically-grown walks are finite.
For p = 1, 〈L〉 grows with system size as N1/2, diverging in the thermodynamic limit. In this limit and close
to p = 1, the mean attrition length diverges as (1− p)−4. Results of approximate probabilistic calculations
agree well with those derived from numerical simulations.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 87.23.Ge Dynamics of social systems – 05.40.Fb Random walks and Levy flights

1 Introduction

In the last few years, researchers have been accumulating
evidence that several kinds of real-life complex systems
can be described in terms of networks or graphs, where
nodes represent typical system units and edges represent
interactions between connected pairs of units. This topo-
logical description has been applied to study both natu-
ral and man-made systems, and is currently employed to
describe various types of processes taking place on real
systems (social, biological, economic, technological) [1–5].
Two highlights of these developments were the Watts-
Strogatz small-world model [6] and the so-called scale-free
networks [7], which incorporate several basic ingredients
of real systems.

In particular, Watts-Strogatz small-world networks are
well suited to study properties of systems with underly-
ing topological structure ranging from regular lattices to
random graphs [8,9], by changing a single parameter [10].
These networks are based on a regular lattice, in which
a fraction p of the links between nearest-neighbor sites
are randomly replaced by new random connections, thus
creating long-range “shortcuts” and causing an important
decrease in the average distance between nodes [2,9]. In
small-world networks one finds at the same time a local
neighborhood (as for regular lattices) and some global
properties of random graphs [8]. In particular, the “dis-
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tance” between any two elements is small as compared
with the system size, and the propagation of information
(or signal, disease, damage, ...) takes place much faster
than in regular lattices [6,11–17]. This short global length
scale affects strongly the behavior of statistical physical
problems on small-world networks, such as site and bond
percolation [18,19], as well as the Ising model [20–22].

Social networks form the substrate where several dy-
namical processes take place. These networks have the
property of being searchable, i.e. people (nodes) can direct
messages through their acquaintances to reach distant spe-
cific targets in only a few steps [23–25]. Although some dy-
namical processes on complex networks have been studied
by using stochastic dynamics and random walks [26–28],
it is known that real navigation and exploration processes
are usually neither purely random nor totally determin-
istic [4,29,30]. In this context, the generic properties of
deterministic navigation [31] and directed self-avoiding
walks [29] in complex networks have been analyzed in the
last years. Self-avoiding walks (SAWs) may be more effec-
tive than unrestricted random walks in exploring a net-
work, as they cannot return to sites already visited. This
property has been used to define local search strategies
in scale-free networks [30]. Nevertheless, the self-avoiding
property causes attrition of the paths, since a large frac-
tion of paths generated in a stochastic way have to be
abandoned because they overlap themselves. This can be
an important limitation for exploring networks with this
kind of walks.
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SAWs have been employed for many years for
modeling structural and dynamical properties of macro-
molecules [32,33], as well as for studying critical phenom-
ena in lattice models [34,35]. They are also useful to char-
acterize complex crystal structures [36] and networks in
general [37]. In particular, the asymptotic properties of
SAWs on small-world networks were studied in connection
with the so-called connective constant or long-distance
effective connectivity [38]. Recently, kinetic-growth self-
avoiding walks on uncorrelated complex networks were
considered, with particular emphasis upon the influence
of attrition on the maximum length of the paths [39,40].
It was found that the average length scales as a power
of the system size N , with an exponent that depends on
the characteristics of the considered networks. For regular
lattices, however, the average maximum length of kinetic
growth SAWs is finite [41,42], contrary to uncorrelated
networks, for which it diverges in the thermodynamic limit
(N → ∞). Thus, for small-world networks there will ap-
pear a crossover when changing the rewiring probability p,
from a regime with confined paths (finite average length
typical of regular lattices, p = 0) to one with diverging
length (characteristic of random networks, p → 1).

Here we study long-range properties of kinetically-
grown walks on small-world networks, and consider the
“attrition problem”. The number of surviving walks to
a given length n is obtained by approximate analytical
procedures, and the results are compared with those ob-
tained from numerical simulations. We find that the aver-
age maximum length increases as the rewiring probability
p is raised, and eventually diverges in the thermodynamic
limit for p → 1, as expected for random networks. We note
that the term length is employed throughout this paper in-
dicate the (dimensionless) number of steps of a walk, as
usually done in the literature on networks [3], and does
not correspond to a distance on the underlying regular
lattice.

The paper is organized as follows. In Section 2 we give
some definitions and concepts related to SAWs, along with
details on our numerical method. In Section 3 we ana-
lyze the length at which non-reversal random walks inter-
sect themselves on small-world networks (self-intersection
length), and in Section 4 we calculate the average attrition
length of kinetic growth SAWs, at which they cannot con-
tinue without violating the self-avoidance condition. The
paper closes with the conclusions in Section 5. In three ap-
pendices we give details of the probabilistic calculations.

2 Definitions and models

2.1 Small-world model

The networks studied here were generated from a two-
dimensional square lattice (connectivity z = 4). Small-
world networks were built up according to the model of
Watts and Strogatz [6,10]. We consider in turn each of the
bonds in the starting lattice and replace it with a given
probability p by a new bond. This means that one end
of the bond is changed to a new node chosen at random

in the whole network. We impose the conditions: (i) no
two nodes can have more than one bond connecting them,
and (ii) no node can be connected by a link to itself. This
method keeps constant the total number of links in the
rewired networks, and the average connectivity (or degree)
is 〈k〉 = z. The total number of rewired links is zpN/2
on average. In the rewiring process we avoided sites with
zero and one links, and thus each site has at least two
neighbors. Note that nodes with k = 1 behave as culs-de-
sac for self-avoiding walks, i.e., a walk arriving at a node
with connectivity k = 1 cannot continue, even though it
has not yet intersected itself.

To study the asymptotic behavior of kinetic growth
SAWs as N → ∞, and analyze the convergence of their
properties with system size, we simulated networks of
several sizes, including up to 3500 × 3500 sites. Periodic
boundary conditions were assumed.

For small-world networks, the probability distribution
of connectivities, Psw(k), is short-tailed with an exponen-
tial decrease for large k. Analytical expressions for this
probability distribution have been given elsewhere [20,43],
and will not be repeated here. We will only give some de-
tails necessary for the discussion below. To this end, we
distinguish now between the ends of links that remain on
their original sites (as in the regular lattice), and those
changed in the rewiring process. The number of links in a
network with mean connectivity z amounts to zN/2. Since
each link connecting two sites in the starting regular lat-
tice is rewired with probability p, the average number of
changes per site is zp/2. This means that each connection
of a site is removed in the rewiring process with proba-
bility p/2. Then, the number of links s generated in the
rewiring process and arriving at a node follows, in the
limit of large N , a Poisson distribution for s ≥ 0:

Pr(s) =
1
s!

(zp

2

)s

e−zp/2. (1)

We note that other ways of generating small-world net-
works from regular lattices have appeared in the literature.
In particular, Newman et al. [19,44] instead of rewiring
each bond with probability p, added shortcuts between
pairs of sites chosen uniformly at random, without remov-
ing any bonds from the starting lattice. This procedure
turns out to be more convenient for analytical calcula-
tions, but does not keep constant the mean degree 〈k〉,
which in this case increases with p.

2.2 Self-avoiding walks

A self-avoiding walk is defined as a walk along the bonds of
a given network which can never intersect itself. The walk
is restricted to moving to a nearest-neighbor site during
each step, and the self-avoiding condition constrains the
walk to occupy only sites which have not been previously
visited in the same walk. The simplest procedure to obtain
SAWs consists in generating ordinary random walks and
stop when they arrive at a node already visited. In reg-
ular lattices, there appears a problem with this sampling
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algorithm, caused by the rapid attrition for long walks, be-
cause the probability of an n-step walk being self-avoiding
decays exponentially for large n [45]. Due to this impor-
tant limitation, more complex methods based on Monte
Carlo sampling have been used to generate SAWs with the
correct weight, and to obtain ensemble averages of various
quantities [45]. In general, for networks including nodes
with different degrees (contrary to usual regular lattices),
sampling by employing simple random walks introduces a
bias in the weight of different SAWs.

For regular lattices, the number un of SAWs start-
ing from a site has an asymptotic dependence for
large n [35,46]:

un ∼ nγ−1µn, (2)

where γ is a critical exponent which depends on the lattice
dimension, and µ is the connective constant or effective
connectivity of the considered lattice [46,47]. In general,
for a lattice with connectivity z, one has µ ≤ z − 1. This
parameter µ can be obtained from equation (2) as the limit
µ = limn→∞ un/un−1. The connective constant depends
upon the particular topology of each lattice, and is known
with high accuracy for two- and three-dimensional lat-
tices [45,48]. Self-avoiding walks on small-world networks
have been studied in recent years [38]. In particular, for
networks generated from the square lattice, the connective
constant µ was found to rise from µ = 2.64 for rewiring
probability p = 0 (regular lattice) to µ = 3.70 for p = 1.

To analyze dynamical processes on networks, it can
be more convenient to use kinetically grown SAWs. These
walks are well-suited to study search or navigation pro-
cesses on networks, where they are assumed to grow step
by step in a temporal sequence. Their asymptotic behavior
can give us also information about the long-range prop-
erties of complex networks, in particular on the presence
of loops. In connection with this, an interesting property
of kinetically grown SAWs is the number of steps neces-
sary to intersect themselves. Moreover, we are interested
in the possibility of avoiding visited nodes and maximize
the length of the walks. For these reasons, we will consider
in the following two kinds of growing walks. The first kind
will be non-reversal self-avoiding walks [45]. In these walks
one randomly chooses the next step among the neighbor-
ing nodes, excluding the previous one. If one chooses a
node already visited, then the walk stops (see Fig. 1).
These walks will allow us to study the self-intersection
length (see Sect. 3). The second type of walks consid-
ered here are kinetic growth walks [49], in which one ran-
domly selects the next step among the unvisited adjacent
sites and stops growing when none are available. These
walks have been studied earlier to describe the irreversible
growth of linear polymers [49], and will allow us to con-
sider the attrition length for a walk on a given network
(see Sect. 4). We note that kinetic growth walks are less
sensitive to attrition than non-reversal SAWs, since in the
former the walker always escapes whenever a way exists.

For each set of parameters (p, N), we considered 10
different network realizations, and for a given network
we selected at random the starting nodes for the SAWs.
For a given parameter set, the total number of generated
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Fig. 1. Schematic diagram showing a non-reversal random
walk of length n = 5 on a network. Open and black circles rep-
resent unvisited and visited nodes, respectively. The starting
node is indicated as 0. After arriving at site 5, the non-reversal
condition allows to choose for the next (sixth) step one of three
possible nodes (labeled as 1, 6, and 7). For a non-reversal SAW,
one chooses among these three nodes. If 1 is selected, then the
walk stops. For a kinetic growth walk, one chooses 6 or 7, each
with 50% probability.

SAWs amounted to 106 for each type of walks. For net-
work size N > 105, we found that fluctuations in the mean
self-intersection and attrition length obtained for different
network realizations with the same p and N , were less than
2%. For N ≥ 106, these fluctuations were on the order of
1% for the mean attrition length, and less than 1% for the
mean self-intersection length.

3 Self-intersection length

To study the probability of a walk intersecting itself, we
consider non-reversal walks that stop when they reach a
node already visited in the same walk. The number of
steps of a given walk before intersecting itself will be called
self-intersection length and will be denoted l.

Let us consider M0 non-reversal walks starting from
nodes taken at random, and call M(n) the number of
walks surviving after n steps (i.e., those which did not
arrive yet at any node visited earlier). In regular lattices,
it is known that the ratio M(n)/M0 decreases with the
number of steps n as nγ−1e−λ0n, where γ is the same
exponent as in equation (2), and λ0 = log[(z − 1)/µ].
Hence, the surviving probability basically decays for large
n as exp(−λ0n), with λ0 = 0.129 for the two-dimensional
square lattice [45].

We now turn to the results of our simulations for small-
world networks. In Figure 2 we show the fraction of re-
maining walks, M(n)/M0, as a function of n for networks
with several sizes and rewiring probability p = 0.3. The
network size increases from left to right, and one clearly
observes a finite-size effect on the surviving probability of
the walks. For increasing network size, the results converge
to an exponential decrease of the ratio M(n)/M0. In fact,
for the maximum size presented in Figure 2 (2000× 2000
nodes), we find M(n)/M0 = exp(−λn), with λ = 0.014.
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Fig. 2. Fraction of non-reversal SAWs that survive after n
steps, without intersecting themselves. Results are plotted for
small-world networks with rewiring probability p = 0.3 and
different sizes, as derived from numerical simulations. From
left to right: L = 100, 200, 300, 500, and 2000.

For other p values, one finds similar decays of the num-
ber of surviving walks, with the coefficient λ decreasing
as p rises.

Let us call tn the conditional probability of a walk
stopping at step n + 1, assuming that it actually arrived
at step n. The exponential decay observed for M(n)/M0

is compatible with a constant tn, independent of n (i.e.,
tn = t), as is expected at least for the asymptotic regime
at large n. In fact, assuming a constant tn, one has

M(n) − M(n + 1) = tM(n), (3)

which can be solved by iteration with the initial condition
M(0) = M0, giving

M(n) = M0(1 − t)n. (4)

Comparing this result with the exponential decay of
M(n)/M0 found above, we can identify: λ = − log(1 − t).

The mean self-intersection length 〈l〉sw in small-world
networks is plotted in Figure 3 as a function of the system
size N for several values of p. For a given N , 〈l〉sw increases
as p is raised, as could be expected. For a given rewiring
probability p, 〈l〉sw rises with the system size, and eventu-
ally saturates to a finite value for large N . This saturation
appears at larger system sizes as p is increased. Finally,
for p = 1 we find a behavior similar to that expected for
random networks, for which 〈l〉rn increases as a power of
N [40]:

〈l〉2rn ≈ πN

2w
, (5)

where w is a network-dependent parameter, w = (〈k2〉 −
2〈k〉)/〈k〉2. The dashed line in Figure 3 corresponds to
equation (5) for a random network with minimum degree
k0 = 2 and 〈k〉 = 4, which gives 〈l〉rn = 1.59N1/2 [40].
Thus, the results of our simulations for small-world net-
works with p = 1 agree with those expected for random
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Fig. 3. Average self-intersection length 〈l〉sw as a function of
system size N for small-world networks with several rewiring
probabilities p. Symbols display results of numerical simula-
tions: open squares, p = 0 (regular lattice); circles, p = 0.2;
triangles, p = 0.4; diamonds, p = 0.6; filled squares, p = 1. Er-
ror bars are less than the symbol size. Dotted lines are guides
to the eye. The dashed line shows an analytical prediction for
random networks, given by equation (5).

networks, for which 〈l〉sw diverges with the system size
as N1/2.

The mean self-intersection length in the thermody-
namic limit is presented in Figure 4. Open symbols rep-
resent data derived by extrapolation of the results of our
finite-network simulations for N → ∞. (In practice, we
calculated the limit of 〈l〉sw as 1/N → 0.) This procedure
was found to be reliable for p ≤ 0.7, since higher p re-
quires networks larger than those considered here. In the
remainder of this section, we present two analytical ap-
proximations for 〈l〉sw, valid for the regions close to p = 0
and p = 1. These approximations correspond to the lines
shown in Figure 4.

To derive an approximate expression for the mean self-
intersection length for finite (small) p, we consider non-
reversal SAWs on the regular lattice, and calculate the
corrections introduced by the rewired links in small-world
networks. An important parameter in this calculation is
the conditional probability q of following a rewired link in
step n + 1, assuming that in fact the walk reached step
n. To first order in p, this probability is given by (see
Appendix A):

q =
p

2

(
1 +

4
z − 1

)
, (6)

where the term z − 1 refers to the number of available
connections for a given step n of a non-reversal walk on
the regular lattice. For the derivation presented in Ap-
pendix A, we assume: (1) the walks include zero or one
rewired links, which is compatible with our order-p ap-
proximation; and (2) a rewired link takes the walker far
away from the starting node, which is valid in average for
large system size.
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Fig. 4. Mean self-intersection length 〈l〉sw as a function of the
rewiring probability p in the thermodynamic limit N → ∞.
Symbols represent data extrapolated from results of numeri-
cal simulations for finite networks (see text). Error bars are
less than the symbol size. Lines indicate results of analytical
calculations for p � 1 (dotted line) and for p near 1 (dashed
line).

With these assumptions, we obtain for small p equa-
tion (A.5), i.e.

〈l〉sw ≈ 〈l〉2D +
q

2
[〈l〉2D + 2〈l〉22D − 〈l2〉2D

]
, (7)

where the subscript 2D indicates that the average val-
ues are taken for walks on the square lattice. Thus, the
mean self-intersection length of networks with p 	 1 is
expressed in terms of the rewiring probability p (related
with q by Eq. (6)) and known results of the regular lattice.
The mean length 〈l〉sw given by equation (7) is plotted in
Figure 4 as a dotted line.

We now consider the average self-intersection length
for rewiring probability p near 1. As shown above, at p = 1
we find for small-world networks the behavior typical of
random networks, with 〈l〉rn increasing as N1/2, and even-
tually diverging in the thermodynamic limit. For small-
world networks with p < 1, 〈l〉sw has a finite limit for
N → ∞, as shown in Figure 3, and its value is determined
by correlations present in the networks. Even though these
correlations are small for p close to 1, they still control the
long-range behavior of SAWs. In fact, in the limit p → 1
and for large enough N , the factor limiting the length of
the walks is the residual presence of loops of size four in
the networks, remaining from the starting regular lattice.
Thus, we assume that the walks finish after circulating
along the links of four-node loops (see Fig. 5a), where no
one of the connections forming them was rewired. Tak-
ing into account that in the square lattice, the number of
loops of size 4 equals the number of nodes N , then the
average number NS of remaining four-node loops is

NS = N(1 − p)4. (8)

Note that in the rewiring process new loops of size 4 (and
also of size 3) can appear, but for large N , their number

(a)

1

2 3

4

(b)

1

2 3

4

Fig. 5. Schematic representation of SAWs along four-node
loops in small-world networks. (a) A non-reversal walk arriv-
ing at site 1 and following through sites 2, 3, and 4. The walk
stops if it tries to return to site 1 (dashed arrow). (b) A kinetic-
growth walk arriving at a four-node loop including a site with
k = 2 (labeled as 4). The walk stops if it follows the sequence
of nodes 1, 2, 3, 4, since at node 4 it cannot continue.

is much less than NS. In fact, the average number of four-
node loops in random networks is basically independent
of N : N4 ≈ z(z−1)3/2, and thus for any p < 1, NS 
 N4

for large enough N .
With these assumptions, we can calculate the condi-

tional probability t of a non-reversal SAW stopping at step
n + 1, assuming that it arrived at step n. This is done in
Appendix B. The probability t turns out to be indepen-
dent of n for large system size, and then for p near 1,
the probability distribution Q(l) for the self-intersection
length l can be approximated as

Q(l) = t(1 − t)l, (9)

which gives the probability for a walk proceeding until
step l, and being stopped at step l + 1.

From the distribution Q(l), one finds an average self-
intersection length 〈l〉sw = (1 − t)/t. For p close to 1, one
has t 	 1, so that, using the expression for t derived in
Appendix B, we find

〈l〉sw ≈ 1
t

=
81
4

(1 − p)−4. (10)

This result takes only into account the self-intersection at
loops of size 4, which gives a dependence of t in the form
(1−p)4. Additional higher-order terms of the form (1−p)m

can be obtained by considering loops of size m in the ana-
lyzed networks (m = 6, 8, ...), but their contribution will
be negligible close to p = 1. The analytical dependence
of 〈l〉sw given by equation (10) is shown in Figure 4 by a
dashed line. It shows good agreement with results of the
numerical simulations for p > 0.5, and predicts a diver-
gence of 〈l〉sw for p → 1, in line with the behavior known
for random networks. On the other side, for any p < 1 our
calculations predict a finite value for 〈l〉sw .

It is worth commenting that using the same approxi-
mations employed above, one finds that the standard devi-
ation of the self-intersection length of non-reversal SAWs
is σl ≈ 1/t, or σl ≈ 〈l〉sw. This is consistent with the
exponential behavior of the surviving probability of these
walks, as discussed above.
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Fig. 6. Mean attrition length 〈L〉sw as a function of system size
N for small-world networks with several rewiring probabilities
p. Symbols represent results of numerical simulations: circles,
p = 0.2; triangles, p = 0.4; diamonds, p = 0.6; filled squares,
p = 1. Error bars are smaller than the symbol size. Dotted
lines are guides to the eye. The dashed line is an approximate
analytical prediction for random networks, given in Ref. [40]
(see text for details).

4 Attrition length

In this section we consider random SAWs, that grow on
the network until they arrive at a node (called blocking
node in the sequel), where they cannot continue because
all adjacent nodes have been already visited and are not
available for the walk. These are kinetic growth walks,
as introduced by Majid et al. [49], and defined above in
Section 2. The number of steps of a given walk until be-
ing blocked will be called attrition length, and will be de-
noted L.

In Figure 6 we show the mean attrition length 〈L〉sw

as a function of the system size N for several values of
the rewiring probability p. Symbols represent results of
numerical simulations and dotted lines are guides to the
eye. For a given N , 〈L〉sw increases as p rises, similarly to
the mean self-intersection length (see Fig. 3). For a given
rewiring probability p < 1, 〈L〉sw rises with the system
size, and saturates to a finite value for large N . For p = 1,
however, we obtain an increase of 〈L〉sw as a power of
N in the whole range of network sizes studied here (up
to N ≈ 107 sites). In fact, we find 〈L〉sw ∼ Nα, with an
exponent α = 0.51±0.01. The dashed line in Figure 6 rep-
resents an analytical approximation for the mean attrition
length in random networks (as given by Eqs. (10) and (24)
in Ref. [40]). According to this calculation, the mean at-
trition length in uncorrelated networks with short-tailed
degree distribution scales as 〈L〉rn ∼ N1−1/k0 , where k0 is
the minimum degree in the network. For the networks con-
sidered here, k0 = 2, and one should expect 〈L〉sw ∼ N1/2,
in line with the results of our simulations shown in Fig-
ure 6 (filled squares).

We note that the small-world networks with p = 1
studied here are not totally uncorrelated, because the re-
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Fig. 7. Mean attrition length 〈L〉sw as a function of the
rewiring probability p in the thermodynamic limit N → ∞.
Symbols represent data extrapolated from the results of simu-
lations for finite networks (see text). Error bars are less than
the symbol size. Lines show results of analytical calculations
in the small-p limit (dotted line) and for p close to 1 (dashed
line).

striction k0 = 2 imposes that some correlations coming
from the starting regular lattice are still present in the
rewired networks. These correlations seem to be unimpor-
tant for defining the main trends of the long-range behav-
ior of kinetic-growth walks.

Shown in Figure 7 is the mean attrition length in the
thermodynamic limit, as derived from extrapolation of the
results of our simulations for kinetic-growth SAWs on fi-
nite rewired networks (open symbols). In fact, these ex-
trapolated values were obtained as the limit of 〈L〉sw for
1/N → 0. For the system sizes considered here, it is hard
to obtain a definite value for the thermodynamic limit for
rewiring probabilities p higher than 0.6, for which larger
networks would be necessary. Lines in Figure 7 indicate
results of analytical approximations presented below.

To calculate the mean attrition length of kinetic-
growth walks on small-world networks with p close to
zero, we employ a method similar to that used for the
self-intersection length in Section 3. In fact, one can fol-
low exactly the same steps as in Appendix A, but putting
only the connective constant µ instead of z − 1 in equa-
tions (A.1) and (A.2). In the non-reversal SAWs employed
to calculate the self-intersection length, one can choose
among z − 1 sites at a given step n on the regular lattice.
Instead of this, for kinetic-growth walks used to obtain
the attrition length, one has in average µ sites available
for step n (assuming n 
 1). For the square lattice em-
ployed here to obtain the small-world networks, we have
z−1 = 3 vs. µ = 2.64. Then, we find for the mean attrition
length for small p:

〈L〉sw = 〈L〉2D +
q′

2
[〈L〉2D + 2〈L〉22D − 〈L2〉2D

]
, (11)
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where

q′ =
p

2

(
1 +

4
µ

)
. (12)

The dependence of 〈L〉sw on p given by equations (11) and
(12) is shown in Figure 7 as a dotted line. As expected,
this approximation to order p gives values of 〈L〉sw lower
than the numerical simulations when p is increased from
p = 0. This is due to the fact that it neglects higher-order
terms, with the contribution of walks going on two, three,
..., rewired links. This contribution can only increase the
mean attrition length given in equation (11), which takes
into account walks going over zero or one rewired connec-
tion.

To obtain the asymptotic behavior of the mean attri-
tion length 〈L〉sw close to p = 1, we follow a procedure
analogous to that employed to calculate 〈l〉sw. Here, as
above, 〈L〉sw is limited by the presence of loops in the
network, and in particular by loops of size four remaining
from the starting square lattice. This means that the high-
est probability for a kinetic-growth walk being blocked
occurs at four-node loops, but in this case there appears
another condition for a path to be stopped, since one needs
a blocking node with degree k = 2 (if all four nodes in a
loop have k > 2 the walker will escape, see Fig. 5b).

With these assumptions, we can calculate the (condi-
tional) probability t′ of a walk being blocked at step n+1,
assuming that it actually reached step n. For large n, t′ can
be considered independent of n and then the distribution
of attrition lengths can be expressed as Q′(L) = t′(1−t′)L.
Finally, the mean attrition length can be approximated
for t′ 	 1 as 〈L〉sw ≈ 1/t′, and using the expression for t′
derived in Appendix C, we find

〈L〉sw ≈ 27e2pp−2(1 − p)−4. (13)

This dependence of 〈L〉sw on the rewiring probability p
is displayed in Figure 7 as a dashed line. The trend pre-
dicted by equation (13) is similar to that of the results
of numerical simulations in the region 0.4 < p < 0.6, but
somewhat higher (less than a factor of 2). Close to p = 1
we find a divergence of 〈L〉sw as (1−p)−4, like in the case
of the self-intersection length 〈l〉sw (see Eq. (10)).

For small-world networks rewired from a cubic lat-
tice, we expect for p → 1 divergences of the mean self-
intersection and attrition length similar to those found
here for networks derived from a two-dimensional square
lattice. In fact, for the cubic lattice the minimum-size
loops include four nodes, and those remaining after the
rewiring process will control 〈l〉sw and 〈L〉sw close to
p = 1, which will diverge as (1 − p)−4. Something anal-
ogous will happen for networks rewired from hypercubic
lattices of dimensions higher than three.

5 Conclusions

Self-avoiding walks provide us with an adequate tool to
analyze long-range characteristics of complex networks. In
particular, they allow us to study the quality of a network

to be explored without returning to sites already visited.
Here, we have studied the self-intersection length l and at-
trition length L of kinetically-grown SAWs on small-world
networks, rewired from a two-dimensional square lattice.
With this purpose, we have considered non-reversal SAWs
to obtain 〈l〉sw and kinetic-growth walks to obtain 〈L〉sw .

We have calculated self-intersection and attrition
lengths by means of approximate probabilistic methods,
which give results in good agreement with those derived
from numerical simulations. For rewiring probability p =
1, both the average self-intersection and attrition length
diverge with the system size as N1/2. This dependence
of 〈L〉sw, however, changes with the minimum degree k0

present in the networks, and in general 〈L〉sw scales as Nα

with an exponent α = 1− 1/k0 (as for random networks).
In the thermodynamic limit, both 〈l〉sw and 〈L〉sw in-

crease with p, but remain finite for p < 1. The length
of kinetically-grown SAWs is limited by the presence of
loops in the networks, mainly those loops remaining from
the starting regular lattice. Close to p = 1, both mean
lengths diverge as (1− p)−4. The same type of divergence
is expected to appear for small-world networks rewired
from cubic and hypercubic lattices in higher dimensions.

This work was supported by Ministerio de Educación y Ciencia
(Spain) under Contract No. FIS2006-12117-C04-03.

Appendix A: Mean self-intersection length
for p → 0

Here we calculate the mean self-intersection length for
small p from the known results for p = 0 (regular lat-
tice). To this end, let us consider a non-reversal SAW on
the regular lattice, that has reached at least length n. Let
us call Sn the node visited in step n. For step n + 1 on
the small-world network, we will distinguish three different
possibilities, depending on the nature of the link followed
in this step:

(1) The link employed in step n+1 was rewired, but keep-
ing one end on node Sn (probability p/2).

(2) The path follows a link that was rewired from a dis-
tant node to node Sn. Since each node is on average
connected in the rewiring process to pz/2 = 2p new
links, the conditional probability of following one of
these links in step n + 1 is

p′ =
2p

z − 1 + 2p
, (A.1)

which gives to order p: p′ ≈ 2p/(z−1). In this expres-
sion, z − 1 is the number of available links for a step
of a non-reversal walk on the regular lattice.

(3) The link followed in step n + 1 was not rewired, and
remains as in the starting regular lattice. This occurs
with probability 1−q, where q = p/2+p′, or to order p:

q = p

(
1
2

+
2

z − 1

)
. (A.2)
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Then, q is the probability of following a rewired link
in step n + 1, assuming that in fact the walk reached
step n.

Now, let us consider a non-reversal SAW of length l on
the regular lattice, and assume that it intersected itself at
step l+1. The same walk will still be possible on a rewired
network (when no one of the links it uses was rewired) with
probability (1− q)l. For a given n ≤ l, the average length
of walks going on a rewired connection at step n + 1 is
n + 〈l〉2D, where 〈l〉2D is the mean self-intersection length
in the regular lattice. This includes the assumption that a
rewired link takes in general the walker to a node on the
lattice far away from the starting one (which is valid in
average for large N). We also assume that once a walk has
employed a rewired link, it does not find any other, which
is consistent with our order-p approximation for 〈l〉sw (no
more than one rewired link in a walk). Therefore, for walks
of length l on the regular lattice, the average length 〈l′〉l
for walks on the rewired networks is:

〈l′〉l = l(1 − q)l +
l∑

n=1

(n + 〈l〉2D)qn, (A.3)

where the second term on the r.h.s. takes into account
the contribution of walks going on a rewired link, and the
first, that of walks visiting no rewired links. Here qn is the
probability of a walk going on a rewired link at step n,
given by qn = q(1 − q)n−1.

Then, to first order in q we have:

〈l′〉l ≈ l + q l

[
1 − l

2
+ 〈l〉2D

]
. (A.4)

Finally, we calculate the average of 〈l′〉l over all possible
walk lengths l in the regular lattice, and find:

〈l〉sw ≈ 〈l〉2D + q

[
1
2
〈l〉2D + 〈l〉22D − 1

2
〈l2〉2D

]
. (A.5)

Appendix B: Mean self-intersection length
for p → 1

Here we present an approximate calculation for 〈l〉sw in
small-world networks with p close to 1. In this limit,
and for large enough N , the length of the walks is ba-
sically limited by the residual presence of loops of size
four in the networks. The number of these loops remaining
from the starting square lattice is given by equation (8):
NS = N(1 − p)4.

We then assume that the walks finish after circulating
along the links of four-node loops (see Fig. 5a). Given a
loop of size 4 in a small-world network, for each of its
nodes there are in average two (directed) links leading to
the loop from the outside. Then, the total number of links
leading to nodes in these loops is

Nl = 8N(1 − p)4. (B.1)

Since the number of directed links in the network is 4N ,
then the fraction of those leading to nodes in loops of
length 4 is f = 2(1 − p)4. Note that we consider nondi-
rected networks, but for our present purpose we have to
distinguish between the two ways in which a single link
can be visited in a walk.

Let us now assume that a walk has arrived at a node
(say the node labeled “1” in Fig. 5a) in a four-node loop in
step n−4 (n > 4). In this case we look for the conditional
probability of circulating around the loop and returning to
node “1” after four steps, i.e., in step n. This probability
r is given by r = 2(1/3)4 = 2/81, where we have used
that the mean connectivity is 〈k〉 = 4, and that there are
two ways to walk around the considered four-node loop
(clockwise and counter-clockwise, see Fig. 5a). Finally, the
conditional probability t of arriving in step n at a node
visited earlier (in step n − 4) is

t = rf =
4
81

(1 − p)4. (B.2)

Note that t defined in equation (B.2) coincides for p close
to 1 with the stopping probability introduced in equa-
tion (3), and is independent of the step n (for n > 4).

Appendix C: Mean attrition length for p → 1

In this appendix we calculate the probability of arriving
at a node with k = 2 (labeled as “4” in Fig. 5b) in a four-
node loop, after circulating along the links of the loop. We
assume that node “4” has degree two, so that two of its
original links in the regular lattice have been rewired away
(probability p/2 for each one), and no other connection has
been established with this node during the rewiring pro-
cess (probability Pr(0) = exp(−2p), see Eq. (1)). Hence,
the average number of nodes with k = 2 in the remaining
four-node cycles is Nv = 4NS(p/2)2Pr(0), with NS given
in equation (8). This yields

Nv = N(1 − p)4p2e−2p. (C.1)

In order for a walk to stop at node “4” (in Fig. 5b), it has
to enter into the loop through nodes “1” or “3”, and then
circulate along the loop counter-clockwise or clockwise,
respectively. Since the average number of links leading to
the loop from the outside through nodes “1” or “3” is four,
the fraction of links in the network leading to this kind of
cycles is

f ′ =
4Nv

4N
= (1 − p)4p2e−2p. (C.2)

This includes the assumption that the probability of four-
node cycles with more than one node with k = 2 is negli-
gible (in fact it is much lower than that of only one node
with degree 2).

If a walk has arrived at nodes “1” or “3” from the
outside of the loop, then the conditional probability of
circulating around the loop and arriving at node “4” (the
blocking node) is r′ = (1/3)3, i.e. 1/3 for each of three
successive steps along the loop. Thus, similarly to Sec-
tion 3 and Appendix B, the conditional probability t′ of
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arriving in step n at a node with k = 2, after circulating
around a four-node loop (in the form shown in Fig. 5b),
is t′ = r′f ′, or

t′ =
1
27

e−2pp2(1 − p)4. (C.3)
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